If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-15t+6=0
a = 4.9; b = -15; c = +6;
Δ = b2-4ac
Δ = -152-4·4.9·6
Δ = 107.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{107.4}}{2*4.9}=\frac{15-\sqrt{107.4}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{107.4}}{2*4.9}=\frac{15+\sqrt{107.4}}{9.8} $
| 10x-28=7x-4x | | 2x+8+136=180 | | 3x+8=1/2(6x-2) | | −8=−(x+3) | | 5/6x-1/3=2 | | 4(2x+9)=5x-12 | | 2^4x-5=8x | | X+6-4x=-3(x-2) | | -42-6n=30 | | v^2-12v-13=0 | | (x)/(7)+2=1 | | (10x+2)=180 | | (14x+45)=90 | | g(3)=3•2-2 | | 23/4+51/6=x | | -5.6=0.5h+12.2 | | 3y-4y+19=-13 | | 1/2(2-4x)-2x=13 | | 15/x=5/11 | | 4x-5=(2(2x+1) | | (5t+4)+5=-6 | | (5t+4)+5=6 | | (4x+24)^2=48 | | 5t-4=10-2t | | 6^(9x)=12^(x+10) | | 8/24=24x | | 220=80-10x | | 2x=14/63 | | 3x+4=−20+6x | | 3(x-1)=2(x-6) | | 800+16t=120+21t | | 14.2=x+10.7 |